当前位置: 真空闸 >> 真空闸发展 >> 我们有了可重复使用的火箭,但为什么还没有
雷锋网AI科技评论按:制造电动汽车和可重复使用的火箭可能很容易,而相比之下,建造核聚变反应堆、可以飞行的汽车、自动驾驶汽车或超回路列车系统就十分困难了。我们甚至看到过调侃理想中的技术进步和实际科技产品的段子:「Wewerepromisedflyingcars,andinsteadwhatwegotwascharacters」(说好的未来科技应该是会飞的汽车,但现实里发生的是一条推特不可以超过个字。)
电动汽车成为了现实,自动驾驶还没有;火箭回收成为了现实,会飞的汽车还没有;用即时通讯工具随时发送文字图片视频成为了现实,可以协助你日常生活的AR眼镜还没有。它们之间究竟有什么区别呢?斯坦福大学教授,美国著名机器人制造专家RodneyBrooks近期在在线杂志《IEEESpectrum》发表了一篇文章,谈了谈他的见解。雷锋网AI科技评论编译如下。
并不复杂的核心答案
简而言之,这个问题的答案就是:经验。理论上的可能性和实践之间的区别只有通过尝试才能发现。因此,即使可以从物理学理论上说明某件事是可行的,如果它没有在实验室中被证明,你就可以认为那件事离成为现实还很遥远的。如果它只能在原型中被证明,那么它离成功还很遥远。而如果某些版本的成果已经大规模部署,并且大多数必要的改进都是可以在不断的进化中实现的,那么它可能很快就会成功。即便如此,如果没有人想要使用它,不管开发它的技术人员有多热情,它也会在仓库里渐渐黯淡下去。
弄清楚是什么使一项潜在的技术易于开发或难以开发是十分重要的,因为做出一个错误可能会导致你做出不明智的决定。法国估计耗资亿美元正在建设的国际热核实验反应堆就是一个例子。如果世界各国政府相信这项艰巨的努力势必走向成功,并可以在短期内实现商用核聚变反应堆,然后他们围绕这一假设制定国家能源战略,那么他们的公民最终可能会非常失望。
下面我会谈几个技术项目,这些项目目前正在进行中,或者至少正在被认真地讨论。在每种情况下,我都将指出一些使一项技术容易或难以投入市场的特性。
其实,有些地方并不需要太多改变
电动汽车是一项相对容易的技术,因为汽车已经大规模生产了一个多世纪。我们拥有超过年的设计和大规模制造挡风玻璃、雨刷、刹车、车轮、轮胎、转向系统、可以上下移动的窗户、汽车座椅、底盘等等的经验。我们也已经拥有了超过20年的数字化传动系统制造经验。
更重要的是,我们已经有了完整的驾驶基础设施,包括道路,停车位,安全标准,汽车保险,以及政府对车辆和司机的驾驶许可。因此,从内燃机车到电动汽车,你不需要从零开始发明所有东西,然后弄清楚如何大规模部署这项技术。
当然,如果你想要以具有竞争力的价格,大规模生产出具有很长的续航里程并且有很强的可靠性的电动汽车,你必须非常聪明,你需要好的电池,而且资金雄厚。但是仍然有很多东西你并不需要做出改变。在这个领域,有很多人已经从事相关组件的开发工作几十年了,也有很多用于构建和组装这些组件的现成的专业知识。电动汽车是一项新技术,但并不是一项难于登天的技术。
同样地,可重复使用的火箭听起来可能是颇具革命性的,但是这个领域仍然有大量的现有技术。所有的液体燃料火箭都起源于WernhervonBraun为希特勒制造的V-2火箭。V-2拥有高流量涡轮螺旋桨发动机(功率为千瓦!),这种发动机将燃料在内部循环流动以冷却引擎的部分部件,并且能够携带自己的液氧,这样它就可以在大气层上空飞行。76年前,V-2迎来了它的的第一次飞行。在这之后,它继续被大规模生产,尽管这之后就变成了劳动密集型工业。
从那以后,全世界已经开发了20多个不同系列的液体燃料火箭,其中一些有数百种不同的配置类型。有着52年历史的联盟号系列火箭在发射的过程中有20个液体燃料推力室燃烧。在Delta系列中,Delta4型的「重型」变种有三个基本上完全相同的核心并排放置,其中每一个核心都可以作为前一个单核Delta4型火箭的第一个阶段。
自上世纪50年代Rolls-Royce展示其「飞行试验器」以来,使用喷气发动机推进器在地球上软着陆的技术就已经出现了。接下来的十年里,「鹞」式战斗机也出现了,它可以垂直起落。年,一架登月载人火箭垂直降落在月球上。上世纪90年代,McDonnellDouglas建造了单级DeltaClipper试验火箭(也称DC-X),该火箭在新墨西哥州的白沙导弹靶场垂直起落了六次。
如今,SpaceX公司生产的可重复使用的猎鹰火箭,在返回发射场或回收驳船软着陆时,利用网格鳍来控制第一阶段。网格鳍片背后的理论是由SergeyBelotserkovskiy于上世纪50年代在俄罗斯提出的,自上世纪70年代以来,装备有这些鳍片的火箭一直用于导弹和制导炸弹,以及载人联盟号太空舱的紧急逃生系统。
我绝不是说开发电动汽车或可重复使用的火箭不勇于创新、不努力,也不具有令人印象深刻的创造性工作。这些工作都做到了上面几点,然而,它们的确建立在大量以前的工作以及现有的物质和业务的基础设施之上,所有这些都增加了成功的机会。对于可能出现的许多问题(尽管不是所有问题),都有已知的解决办法。因此,这会给我们一定的信心,可以预计出这些技术在技术上是成功的,并且可以大规模部署。
我们还有很长的路要走,远未成功!
然而,全新的想法却很难评估。无论这些想法乍看起来多么合乎逻辑,我们都不清楚它们何时会成功,甚至它们是否会成功。
热核聚变反应堆就是一个例子,该理论很早就被提出来了,但与它刚刚被提出来的时候相比,该技术仍然几乎没有进展,并没有更加接近于实现。自上世纪50年代以来,该项目一直在开发中,在那个时候,我们知道了持续的核聚变「不是无法实现的」。毕竟,太阳就是这样发光的。66年前,随着「IvyMike」氢弹的爆炸,人类首次实现了短暂的核聚变反应。过去,未来主义者满怀信心地预测人们在可预期的将来可以使用核聚变内发电,但这一点到现在还没有实现。我怀疑今天的许多人会相信任何具体的预测核聚变被用于发电的日期。
为了实现持续的核聚变,温度极高的气体必须被保存在极高压力的容器中。没有物理容器能承受这样的温度和压力。作为替代,强磁场可以用作非物理容器。而这样的磁场是非常难以产生和控制的,我认为即使是50年之后,也没有人会相信我们已经接近于解决所有的工程问题。
我想我无需多言了:这的确是一个难题。
可以飞行的汽车是又一个重新流行起来的梦想。最初,你的梦想是开车行驶到一片开阔的可以起飞的空地,飞到你的目的地,然后着陆,继续回到路上开始最后一段旅程。你的飞行汽车可以让你跳过道路拥堵,以更快的速度巡航。这个梦想从来没有实现过,但是现在,十几家创业公司都在这个赛道中角逐,就在刚刚过去的十几年里,积极致力于这个想法的工程师数量大大增加了。
这个问题很难解决,因为飞行汽车结合了两种完全不同的工程结构。想要设计一种既能在数千米高空飞行,又能适应道路和高速公路网对传统汽车施加的狭窄空间限制,同时又能满足飞行和地面运输的各种安全和效率要求的交通工具,并非易事。对一种工程结构进行优化意味着牺牲另一种工程结构的性能。
因此,今天的初创公司所提出的飞行汽车通常是完全不同于上述交通工具的东西就不足为奇了:他们正在研发点到点的飞行汽车,其中大部分是电动的,据说这些飞行汽车可以由普通人驾驶,无需经过大量培训。这样的飞行汽车通常没有车轮,这意味着你需要通过一些其他的方法前往你的飞行汽车停放的地方,一旦你着陆了,你又需要通过某种方法前往你的最终目的地。
虽然飞行汽车的这种改型不必体现在公路上,但它存在其他问题:车辆必须以某种方式充电或加油。作为超轻型飞机,它们不能飞越建筑物上空,这一限制将妨碍它们在通勤方面的用途。业余飞行员几乎没有受过任何训练,但仍需遵守空中交通管制规则,并通过保险公司的检查。
况且,迄今为止我们还没有看到任何一次公开的飞行演示,甚至没有人声称将进行这样的演示。此外,规章制度和相关的保险也都还没有还没有开始实施。现在期待这样的飞行汽车能够梦想成真还为时过早。
困难近在咫尺
无人驾驶汽车可以说是目前最受期待的一项技术。而这个领域的困难在于,没有人真正尝试过这样的技术。
去年,我在这本杂志上就这个问题的一个方面发表了文章:自动驾驶汽车可能对人类行为产生的意想不到的后果(
转载请注明:http://www.aideyishus.com/lktp/2415.html